Series Question IIT JAM 2018
$\sum_{n=1}^\infty (-1)^{n+1}\frac{a_{n+1}}{n!}$
$=\sum_{n=1}^\infty (-1)^{n+1}\frac{n+1+\frac{1}{n+1}}{n!}$
$=\sum_{n=1}^\infty (-1)^{n+1}\frac{n}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!(n+1)}$
$=\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{(n-1)!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{(n+1)!}$
$=[1-\frac{1}{1!}+\frac{1}{2!}-...]+ [1-\frac{1}{2!}+\frac{1}{3!}-...]+[\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$
$=e^{-1}+[1-\frac{1}{2!}+\frac{1}{3!}-...]+[\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$
$=e^{-1}+[\mathbf{1-1}+1-\frac{1}{2!}+\frac{1}{3!}-...]+[\mathbf{1-\frac{1}{1!}}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$
$=e^{-1}+[1-(1-\frac{1}{1!}+\frac{1}{2!}-...)]+e^{-1}$
$=e^{-1}+[1-e^{-1}]+ e^{-1}$
$=e^{-1}+1$
Hence answer is option (D)
Book recommended: Must purchase it nice offer!
For our visitors: Please Support us By, subscribing our Blog, share our blog links. Thank you.
Comments
Post a Comment