Posts

Showing posts from July, 2020

IIT Jam 2019 Series Question

Image
   Solution is given(explained) in following YouTube video

Nice Quote By "Paul Halmos"

Image

Series Question IIT JAM 2018

Image
General Mathematics Question :  Solution :   $\sum_{n=1}^\infty (-1)^{n+1}\frac{a_{n+1}}{n!}$ $=\sum_{n=1}^\infty (-1)^{n+1}\frac{n+1+\frac{1}{n+1}}{n!}$ $=\sum_{n=1}^\infty (-1)^{n+1}\frac{n}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!(n+1)}$ $=\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{(n-1)!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{n!}+\sum_{n=1}^\infty (-1)^{n+1}\frac{1}{(n+1)!}$ $=[1-\frac{1}{1!}+\frac{1}{2!}-...]+ [1-\frac{1}{2!}+\frac{1}{3!}-...]+[\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$ $=e^{-1}+[1-\frac{1}{2!}+\frac{1}{3!}-...]+[\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$ $=e^{-1}+[\mathbf{1-1}+1-\frac{1}{2!}+\frac{1}{3!}-...]+[\mathbf{1-\frac{1}{1!}}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-...]$ $=e^{-1}+[1-(1-\frac{1}{1!}+\frac{1}{2!}-...)]+e^{-1}$ $=e^{-1}+[1-e^{-1}]+ e^{-1}$ $=e^{-1}+1$ Hence answer is option (D) Book recommended : Must purchase it nice offer!   For our visitors : Please Support us By...